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Abstract We consider the interband light absorption coefficient (mc) for a d-dimensional 
discrete disordered system, whose Hamiltonian consist of a translation invariant part (d- 
dimensional discrete Laplacian) and an offdiagonal random part. Assuming that the range 
R of the latter is large and that its magnitude is of the order R-dP we 6nd that R = CQ 
limit of the MC. We discuss some properties of the MC in lhis !id: its boundedness, edge 
singularities, its singular form in the limits of vanishingly translationally invariant pm or infinite 
&om part. We also show that the latter property is the same for the system with a diagonal 
smoothly distributed disorder, i.e. for the discrete ScMidinger operator whose random potential 
has a smooth probability distribution. This should be conh'asted with the integrated density of 
slates which is always smoother than the distribution of the random potential. 

1. Introduction 

The interband light absorption coefficient (LAC) is an important quantitative characteristic 
of semiconductors. Using effective mass approximation which is widely accepted in solid 
state physics this quantity can be written as (Shklovskii and &os 1970) 

provided the temperature is sufficiently low. The constant a0 is determined by fundhental 
physical constan% and by the band structure of the ideal (non-doped) semiconductor, w 
is the light frequency, h = frw - E,, where E, is the width of the forbidden band (gap) 
of the ideal semiconductor and [AI is the volume of the sample. Energy levels E: and 
wavefunctions q: of electrons (+) and holes (-) are the solutions of the equations 

where q ( x )  is a random potential generated by impurities. For simplicity we will assume 
that the effective masses of electrons and holes are equal and denote A /2m+ by the symbol 
3. 

The LAC as all basic physical quantities characterizing macroscopic properties (the 
density of states (DOS), conductivity, etc) is a self-averaging quantity. This means that with 
probability one U A ( A )  (more precisely the respective measure) tends to a non-random l i t  
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2528 B A  Khoruzhenko et a1 

a(A) as Ihl --f CO (Kirsch and Pastur 1990). The UAC is similar in several respects to the 
DOS. However, there are properties of the UAC that have no analogues in the case of the 
DOS. For instance, the smoothness of the DOS and of the distribution of the random potential 
are connected rather closely. On the other hand we show below that a(A) tends to 6(A) as 
3 + 0 or U -+ CO for arbi t rq  high smoothness of the distribution of q(x).  

It should be noted that the smoothness or at least the boundedness of such quantities as 
the DOS, the conductivity, the UAC, etc is an important element of a mathematical physics 
of disordered systems. However, this property has been studied extensively only for the 
DOS and the respective methods, the Wegner lemma (Wegner 1981) in particular, cannot 
be applied directly to the conductivity and the UAC. This is because these quantities are 
determined via the second moments of the Green function and have more complicated 
analytical structure than the DOS. 

Kirsch and Pastur (1990) studied the asymptotic behaviour of the L A C  for H* having 
the form (2) in the strong localization (strong disorder) regime fio << E,, i.e. for the optical 
transitions between levels which lie sufficiently far from the edges of the unperturbed bands. 
In this paper we are going to consider the weak disorder regime where the delocalized states 
are essential. It is widely believed that this regime can be described sufficiently well by 
the so-called one-site approximations (see e.g. Yonezawa and Morigaki 1973 and Lifshitz 
et a1 1988). They can be considered as analogues of the mean-field approximation in 
statistical physics. It is well known that latter approximation is asymptotically exact in 
the limit of infinite interaction radius (see e.g. Hemmer and Lebowitz 1973 and Pastur and 
Shcherbina 1984). In the present paper we consider an analogue of this limit in the theory 
of disordered systems calculating the LAC. It turns out that for random operators a natural 
analogue of the interaction radius is the range R of the random off-diagonal part. Thus, OUI 
class of operators is somewhat different from (2). However, our results are rather similar 
to those obtained for the Schriidiger operator with random potential in the framework of 
the coherent potential approximation (see also K h ~ ~ n z h y  and Pastur 1992 for discussion 
of this point). 

The paper is organized as follows. In section 2 we describe the model and briefly 
discuss the connection between the Green functions and the UAC. In section 3 we derive an 
expression for the UAC in the limit R = CO. In section 4 we prove the boundedness of the 
LAC, the existence of an energy gap and find the behaviour of the UAC near the gap edges. 
In section 5 we study the UAC for the Schradinger operators (2) in the limits J' +, 0 or 
v -+ 03. 

2. The model 

We consider multidimensional random self-adjoint operators H,' in l z (Zd)  with matrix 
elements: 

Here HO is the lattice Laplace operator 
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which is the translational invariant part of our Hamiltonians (3). W ( x ,  y) are independent 
(except for the symmetry condition W ( x ,  y )  = W ( y ,  x)) Gaussian &dom variables with 
zero mean and the variance of the form 

( W X ,  y ) W ( z ,  t ) )  = ( K x  - Z M Y  - t )  + 6 ( x  - m y  - z ) )  

(here and below we denote the averaging with respect to random variables by the symbol 
(. . .)) and the function rp(t), t E Rd, is bounded, has a compact support (say a unit ball) 
and 

/""rp2(t)df = 1. 

For fixed R the function rp restricts the disorder in (3) to a finite region in Z d .  As 
R + 03, the range of disorder tends to infinity but at the same time its magnitude goes 
to zero. This l i t  is similar to the infinite interaction radius l i t  in statistical physics. 
It should be noted that other non-perturbative limits similar to those used in statistical 
physics can also be considered in the theory of disordered systems. We mention here the 
infinite number of components limit introduced by Wegner (1979) and the infinite~space 
dimensionality limit (see e.g. Khorunzhy and Pastur 1992 and Khorunzhy et a1 1992). In 
the case of the LAC all these limits result in practically the same formulae. Therefore we 
consider only the infinite R limit. 

To define the ILAC we consider first a finite cube A c Zd and introduce the respective 
finite volume distribution function (cf (1)): 

where x is the indicator of (0, CO) and TA is a measure on Rz defined as follows. For two 
semi-intervals A1 and A2, the measure of their product A = AI x A2 is 

where E: are the resolutions of identity of the operators (3) in a finite cube A. According to 
Kirsch and Pastur (1990) if H' are given by (2) then there exists a non-random distribution 
function A(1) such that in all its continuity points with probability one A A @ )  + A(h) as 
A + 03. This is the self-averaging property of AA@). It can be shown that the same 
assertion is valid in the case of (3) for fixed R. To prove this one can use the technique 
developed by Pastur and Figotin (1992). The derivative of A@), if it exists, we shall call 
the LAC. 

In terms of the resolutions of identity of H* the quantity A(A) can be written as 

where 

m 
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Here and below we denote the averaging over the random variables by the symbol (.). If t 
is absolutely continuous with respect to Lebesgue measure and t(A1,'Az) is its density then 
the ILAC can be calculated as 

u(A) A'@) = t ( A  - A2, A2) dA2. s, 
Let us consider the Stieltjes transform of the measure t: 

By using (7) and the spectral theorem we can represent g(z1,zz) in the form 

g(zi, ZZ) = (tGt(~i)G-(~z)l(O,O)) (8) 

where G*(z) = (If* - z)-l are the Green's functions of If*. 
The inversion formula (see e.g. Reed and Simon 1972) 

l b  
l i i  - 

r - rot  2RI [G*(A f i e )  - G*(A - ic)]dA = $E*([a, bl)  + E * ( @ ,  b))] 

implies that g(z1, zz) determines the measure 5 and its convolution (6) uniquely. The same 
formula implies that the densities of these measures, if they exist, are given by 

where 

Now, for the operators (3) all quantities above will depend on R. In the next section 
we calculate limR+, gR(z1.z~) for non-real ZI, ZZ. Since the one-to-one correspondence 
between the Stieltjes lransforms and the respective measures is continuous with respect to 
convergence of the Stieltjes transform for all non-real z's and weak convergence of the 
respective measures, the latter result will yield weak convergence of the measures Q from 
(7). We show also that the limiting measure has a bounded density which we identify with 
the R = 00 l i t  of the u c .  

It should be noted that weak convergence of measures does not imply, generally 
speaking, convergence of respective densities. However we do not discuss here the 
legitimacy of this identification, which is widely accepted in the thoery of disordered systems 
and is equivalent to the legitimacy of the interchangeability of the operations lim,,,2,0+ and 
limR,, in the respective Stieltjes transform (see (9), (10)). We note only that the situation 
here is similar to that in statistical physics where in order to perform the infinite interaction 
radius limit for the magnetization (which is the derivative of the free energy) one should 
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introduce the breaking symmetry field. In our case the imaginary part of the energy can be 
regarded as an analogue of the symmetry breaking field. 

We remark in the conclusion of this section that we consider Gaussian W’s in (3) only 
for the sake of brevity of our proof. In fact our final formulae (21) and (22) for the R = 00 

l i t  of the Stieltjes transform of the ILAC is valid for any independent (modulo symmetry 
conditions W ( x ,  y) = W ( y ,  x ) )  and identically distributed W s  such that 

(W(X, y)) = 0 (W*(X,Y)) = 1 (IW(X,Y)13) < W. 

The respective proof can be obtained by the technique, developed by Khorunzhy and Pastur 
(1992). 

3. The limit of infinite interaction radius for the two-point Green’s functions 

In this section we calculate zz) = ( [ G i ( z l ) ,  G;(.a)](O, 0)) in the limit R + 00. 

We begin with simple heuristic arguments and derive the explicit formulae (201423) for 
limR,, gR(z1, z2). Afterwards we shall prove these formulae rigorously. 

Our arguments are based on two relations. The first is the resolvent identity: 

where G i ( x ,  r ;  z l )  and Go(x - r;  z1) are the matrix elements of GZ(z1) and Go(z1) = 
(Ha - z1)-l, respectively. The second is the formula 

(Wf(W)) = ( f ’ ( W ) )  (12) 

which is valid for Gaussian W with zero mean and unit variance and can be easily proved 
by integration by parts. 

Introduce the notation: 

Q R ( x ,  Y) = [ G ~ ( z ~ ) G ~ ( z z ) l ( x ,  Y) = GZ(x,  r ;  z d G i ( r .  Y ;  z z )  
r a d  

TR(X - Y )  = ( Q R ( x ,  Y)) GR(X - Y ; Z )  = (G$(x, Y; z)). 

Then gR(Z1,z2) = TR(O) = (QR(O, 0)). Applying (ll), (12) and the identity 



where 

Since the norm of the resolvent of any self-adjoint operator is bounded from above by 
[Inzl-’ we have 

where C, = m=,,(R)d Irp(t)l and B = zSEy IGo(s;zl)l. Our form (4) of HO implies 
exponential decay of G&; z1) and therefore the finiteness of B. A similar estimate holds 
for 62. Thus lSil < CR-d, i = 1.2, and we can neglect Si in (14) when R -+ 00. 

Now consider sums over t on the RHS of (14). i.e. 

and 

It is easy to see that for IID W’s in (3) and I n z  # 0, G:(t, t ;  z) and Q R ( ~ ,  t )  are 
bounded ergodic fields with respect to t E Zd. Thus if these quantities would not depend 
on R we could use the ergodic theorem and replace for R 4 M these sums by the 
respective expectations (G;(t, 2; z))  GR(O, z )  and (e.&, t))  E TR(O). Carrying out this 
replacement in (14) and neglecting 81.2 we obtain the relations 

T R ( X  - Y) (1 - V’TR(O)) Go(X - f, Zi)GR(t - Y; Z2) 
I& 

+ u’GR(o, z1) G ~ ( X  - t ;  z I ) T R ( ~  - y). 
I E W  



Interband light absorption coeficient: solvable model 2533 

Treating this relation as an integral equation for the kernel TR (x - y ) .  we can easily express 
this kemel through G& - y) and GR(X - y ) .  In particular 

(17) 1 gR(Z1, 22) = TR(O) = FR(Z1, Zd(1 + u2FR(zl, z2))- 

where 

F ~ ( z ~ ,  z2) = [(I - U'GAO, Z~)GO(Z~))-'GO(Z,)GR(ZZ)I(O) 

and GR(z) denotes the Toeplitz operator defined by the kernel GR(X - y ;  z). 
According to Khorunzhy and Pastur (1992) (see also Khorunzhy et al 1992) 

(18) 2 l i i  GR(X - y ;  z) = G(x - y ;  z) = Go(x - - y .  z + U r(z)) 
R-m 

uniformly with respect to x and y ,  where r(z) 
equation 

G(0, z) is the unique solution of the 

in the class of analytic functions in CO = {z E C : I Imzl # 0) such that Imr(z) . Imz =- 0. 
NO@) in (19) denotes the DOS of the unperturbed operator Ho. 

As a result we obtain that the limiting form T of the operator TR = (G:(z~)G,(z~)) is 

(20) T = Go(zl + u2r(zl))Go(z2 + u2r(zz))(l - u2T(0))-' 

where 

and 

It should be noted that the derived formulae (20)-(22) are rather similar to those one can 
obtain for the product of resolvents of the Schrodinger operators (2) in the coherent potential 
approximation (see e.g. Yonezawa and Morigaki 1973). 

In the next section we use these formulae and (9), (10) to study the L A C  and the measure 
(7) as R -+ W. Now we give the rigorous proof of (20)-(22). Namely, we will prove 
helow that for any Z I ,  zz E CO 

lim sup I ( [ G : ( z ~ ) G ~ ( z ~ ) I ( ~ ,  Y ) )  - T ( x  - Y ) I  = 0 (23) 
R-m & y € P  

where T is given by (20). 
The proof is based on the moment equations method proposed by Khorunzhy and 

Pastur (1992). This method is similar to the well known method of correlation functions in 
statistical physics (see e.g. Ruelle 1969). For an infinite family of moments of the Green's 
functions we derive an infinite system of relations in which some terms are small for large 
R. Regarding this infinite system of relations as an equation in a suitable Banach space 
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we show that it can be uniquely solved as R + 00 and the corresponding solution leads to 

We introduce the Banach space B of sequences of bounded functions of an increasing 

B A Khoruzhenko et ul 

(23). 

number of arguments 

B=(f:f=(f,")&=1, f/=f:(~,,...,x~,~n,. . . , YZ;XO,YO;X-I,.. . sx-m, Y-I,. . . , Y-m)} 
with the norm 

llfll = sup sup sup sup If,"(X", Y,;xo,yo: X",  Y V .  
nm>l Xn.Y.*0.yoXm.Ym 

Here and below we use the notation 

x, = {Xn,. . . , X I ]  

f U X "  = { t , x n , .  . . , X I ]  

X" = {x-,,  .. . ,L"] 
X " U t  = {X- l . .  . . ,L,, t ] .  

Let us consider the moments 

Using again (llH13) we obtain the following relations for M,": 

M,m(X", Y.:xo, yo; X". Y " )  = L,m(X,, Y,; xo. yo; X", Y") 

x [M;+l(t U x., i U Y,; s, yo; X", Y") 

- M,""(Xn, Y,: t ,  t :  Xm Us, Ym u y 0 ) ]  
+ ~ , m ( X n , Y n ; x o r Y o ;  X", Y") 

and 

x [fZ1Ct U x,, t U Y"; s, yo; X", Y") 

- f,"+'(X.. Y,; t ,  t ;  X" us. Y" U yo)] 
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and write (24) as the system of equations 

M(R)  = ARMW + L(R) + $R) 

where M(R)  = (Mm)m n m.n=l’ 8‘ R, - - (8m)m n m.n=l* L(R) = (Lf)&=l. 

and [ l d R /  <2u2/1J.mz~I. Then, if (z1,zz) ED,  where 
Simple calculations similar to those in (15) show that M ( R ) ,  LcR) and 8(R) belong to B 

D = [ ( z l ,  22) E C2 : I Imzl z max(4u2, 1) and I h z ~ l  z 11 

the system of equations 

m =dim + lCR)  (26) 

with [ ( R )  = (lF)&, , 

1;cx., Y,; xo. yo; xm, Y”) 

has a unique solution m(R). It follows from (25) that [18(R)I[ < c R - ~ .  Besides (Khorunzhy 
and Pastur 1992, Khorunzhy et a1 1992) limR,, l[LR - l(”I[ = 0. Since dR) - M(R) = 
(1 - d)-l(l(R) - L(R) - 8(R))  and l [AR[l  < 1/2, we have 

It is easy to check that 

satisfies (26) if TR(XO - yo) solves the equation 

x I ( G ~ ( f , t ; Z i ) ) T d S  -Yo)  -TR(O)(GR(S,YO;ZZ))~. 

It follows from (5 )  and (19) that the limiting form of this equation for R = 03 is (cf (16)). 

and its unique solution is given by (20). Combining (27), (28) and the last observation we 
find that (23) is valid for all (z l ,z2)  E D. To finish the proof we only note that a priori 
analyticity of the Green’s function up to the real axes allows us to perform the analytic 
continuation of the solution (20) to all z l ,  z2 E @o. 
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4. The limit of infinite R for the ILAC 

Now we calculate the infinite R l i t  of the two-dimensional measure ~ ( z ) .  The density 
of the limiting measure t can be found from (9). Let us first show that this density is 
bounded. The final expression for the infinite R limit g(z1 ,zz )  of the two-point Green's 
function ([GzG,](O, 0)) (21) contains the infinite R limit r(z) of the onepoint Green's 
function (G$(O, 0, z ) ) .  We list below some properties of r ( z )  which we shall use. First of 
all r ( z )  does not depend on the choice of the sign in (3). This is due to the symmetry of 
the distribution of the random variables W(n,  y ) .  By the inversion formula 

N(Al )  - N(A.2) = 

r ( z )  uniquely determines the limit N(A)  of the IDS N&) of H,' as R -+ 00. It is natural 
to call the support of dN(A) the limiting spectrum of the family of operators H; which we 
identify with the suppom of the respective integrated densities of states. This set coincides 
with the closure of those points A E R where Imr(A + io) > 0 and can be described as 
follows. 

We define two functions 

and consider the equation 

This equation has two solutions for any U > U, = [12(0)]-1/2. For space dimensionality 
d < 4, uc = 0 and (30) has two solutions for any U > 0. Let us denote these solutions by 
81 and 02, 81 c 0 and 02 > 2dJ. Then the limiting spectrum of both H,' is the closed 
interval [a, bl with a = 81 - uzI1(BI), b = 62 - u211(&) if U > U,, and a = -u2Z1(0), 
b = 2 d 3  - u211(2dJ) otherwise. 

We shall also use the inequality 

Ir(A&iO)[ < U - ' .  (31) 

which is valid for all A. This equality and the identity 

where {(z) = z + u2r(z),  can readily be derived from (19). 
Since 

Imr(AfiO).=O A $ [ a , b l  (33) 

we have t ( A l ,  Az) = 0 if A, or A2 does not belong to the spectrum and 
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Thus we have to prove the boundedness of t(hl. hz) only for AI ,  AZ,E [ a ,  bl. 
Let us introduce the self-energies 

Cj = hj + u2r(hj io) = xj + iyj j = 1,2 (34) 

and denote the denominator of (21) by @(<I, <2), 

(9), (21) and (31) show that our problem reduces to the proof that @(cl, 52)  is strictly 
positive for h l ,  A2 E [U, b ] .  It follows from (32) that 

Therefore 

or after simple algebra 

Combining this expression with (31) we obtain the inequality 

Now since for any unit measure dNo 

and for No@) corresponding to (4) the RHS of this relation is ~ 2 1 r d P  we have 

It follows from this inequality and (21) that 

and we obtain the upper bound for the UAC: 
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The RHS of this bound tends to infinity as J + 0 or U + CO (in the latter case this is 
because b - a = O(u)).  This property of the bound reflects the genuine behaviour of the 
ILAC for J + 0 or U + bo. Indeed, basing on our expression for the Stieltjes transform, 
it can be shown that in both limits ( J  = 0 or U = bo) the L A C  equals 6(h). In the next 
section we show that the same property is true for the LAC corresponding to the Schrodmger 
operators (2). 

Now we remind that A = Rw - E,, where Eg is the width of the forbidden band in 
the ideal semiconductor. (33) implies that if A < 2a(u), t(h - p) 0 for all p E [a, b]. 
Therefore, as follows from (34), a(A) = 0 for all h < 2a. This means that an interband 
transition is impossible if the energy of photon Eo is less than A = E , + b  (a is negative). 
Thus the width of the energy gap for a(h) in OUI model is equal to A. Because a vanishes 
as U + 0, A is positive for sufficiently weak disorder. 

One of the most important properties of the ILAC is its behaviour near the edges of the 
gap, i.e. for 2, J. 2u in our case. According to (31) and definition of kz(z1, z2) if h = 2a + E ,  
E 0, the lower and upper limits of integration in (34) are a(u) and a(u) + E ,  respectively. 
Therefore, in the view of (36) we have 

a(A)<const.6 E + O + .  (37) 

This bound, however, is rather rough because as a rule the density (9) tends to zero as 
A I ,  Az + a, b. Thus, it is natural to think that a(h) = o(E),  E + +O. Below we prove that 

a@) = const .E E + O +  (38) 

for d < 4. Relations (37) and (38) should be compared with the behaviour of the L A C  for 
crystalline semiconductors, i.e. for U = 0 in (3). In this case according to (IO) 

a ( A )  = 6(h - 2E(k))dk L (39) 

where Td = [ 0 , 2 ~ ) ~  is the d-dimensional torus and E(k)  = Jxj=,(l - coskj) is the 
dispersion law (the symbol) of the free Laplacian HO in (2). Since now a = 0 we should 
look for asymptotic behaviour of (39) for E h J. 0. It is easy to find, that 

a(h) = const . E ( ~ - ’ ) ’ ~ .  (40) 

This asymptotic formula is well known in semiconductor physics. Comparing (40) with (41) 
and (42) we see that even small disorder, which we are considering in the paper, makes the 
UAC smaller near the edge of the gap increasing the exponent of the polynomial asymptotic. 
Recall that according to Kirsch and Pastur (1990) in the case of strong disorder the LAC is 
exponentially small near the edge of the gap. 

To prove (38) we note first that straightforward calculations yield 

where c(zl, 22) + 0 as Imzl and Imz2 tend to zero and 
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Now we use the relation z1 - 22 = (1 - uZF(z l ,  z2)(51 - Cz) to obtajn 

Since 

Re(F(z1,zz) -F(z1,22)) = -2 -dNo(A) s yF 

where D = Ih - 51 lzll - 521’ and ( j ,  j = 1,2, are given by (34). we arrive at 

- [ (A - ;)dNo]’ 

It follows from (41) that the ILAC for our model has the form 

- P)P(P)BO - f i ,  fi)dfi 

where 

p ( p )  = (2ni)-’[r(~ + io) - r(A - io)] = JT-’ Imr@ +io) 

is the density of states of H,’ in the infinite R limit. 
Since p(p) = 0 outside of [a, b] ,  we have 

a(2a + E )  = p ( k  + E - ~ ) p ( f i ) B @  + E  - f i .  p)dpL. 

It is known (see e.g. Khorunzhy et al 1992) that 

p ( ~ )  = constla - AI’’’ as A -+ a +o. 
Therefore if 

is finite, then a(& + E )  - BE’, as B -+ O+. It has been mentioned already that 01 < 0 for 
d < 4. Hence, the asymptotic behaviour of the ILAC for these dimensions (and for three 
dimensions, in particular) near the gap edge has the form (38). If the strength of disorder 
in our model is small enough, U < U, = [ Z Z ( O ) ] - ’ / ~ ,  then the same holds also in high 
dimensions. For U > uc the asymptotic behaviour depends on the space dimensionality. 
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5. The limits of the ILAC for ,? + 0 or V + CO 

Let us consider the Schrodinger operators in 12(Zd): 

H" = HO & uq(x)  x E zd (42) 

where HO is given by (4) and q ( x )  is a family of independent identically distributed random 
variables. In this section we prove that for these operators the L A C  tends to &(A) as 3 + 0 
o r u + m .  

We start with the case of small 3 and rewrite (42) as H* = Yhoi=V(x), V ( x )  = uq(x) .  
It follows from the spectral theorem that the Fourier transform of (6) is (cf (8)) 

m 

E %, e-ifA dA(1) = ([e--ilHfe-iiH- I@, 0)). 

1 I (eirVhoe-iiHt + ,-izVhOe-irH- 

By using the Duhamel identity e-ir(A+B) = e-irA -ili e-i(r-r)ABe-T(AtE) ds  we obtain 
that 

e-irH+ -1rH- - e - 1 - i Y  
0 

Since for any self-adjoint operator A 

lGrA(x, y ) [  < [[eirA[[ = I 

we have p(t) = 1 + S(Y,f), IS(Y,tl < 211hollrS + llholIr2?. Therefore for any 
t < CO&) + 1 as 3 + 0. This means that A(h) tends to the indicator of the interval 
(0, +CO) or in other words A'(1) + S(1) as S -+ 0. 

Now we consider the more complicated case when U + CO, i.e. when disorder is large. 
We prove the statement provided there exists a bounded density of the distribution of the 
random variables q ( x )  : P ( q ( x )  E dq} = p(q)dq, maxp(q) < CO. Namely we show that 
the Stieltjes transform of A(1): 

m 

K(zi, z d  = L_([G+(zi - P)G-(P - zz)l(o.O)) d/l 

coincides in the limit U + 03 with 
m 

k(zi, zz) = /-([gt(zi - P)g-(fi - zz)I(O,O)) d/l 

where g*(z) = [&uq(x) - z]-~.  It is easy to check that for all uk(zi, zz) is the Stieltjes 
transform of S(A),  or more precisely 

and the convergence of or@) to 6(h) will follow from the uniqueness theorem for the Stieltjes 
transform. 
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Let us prove that IK(z1, ZZ) - k(z1, Z Z ) ]  -+ 0 as U -+ CO. We include the diagonal part 
of Ho into zl.and z2 and restrict ourselves to the case of Ho(x, x) = 0. It follows without 
the loss of generality from the resolvent identity that 

G*(z) = g*(r)  - g*(z)Hog*(z) + g*(z)HoG*(z)Hoh*(z). 

Therefore 

where 

and 

rz = -[g+(zi)g-(zz)Hog-(zz)1 

are equal to zero. 
To estimate l-", rj(zl - p, p - 22) d p  we use the inequalities: 

and 

It is clear that 
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and 
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Similar estimate holds for r7. Combining the resolvent identity and (43)-(45) we find again 

where C depends only on Ho, p(q) and variables ZI  and z2. Summarizing the above 
arguments we conclude that lK(z1,zz) - k(zl,zz)[ + 0 as U + 00 and therefore 
u(A) + 6(A). 

It is natural to ask whether this behaviour will remain if the distribution of the potential 
is not absolutely continuous. At the moment we have no analytic results concerning this 
question but our results (see figures 1 and 2) suggest that the answer may be negative or at 
least the pattern of convergence is more complicated than in the smooth case. One more 
support of this suggestion is given by the results of Carmona et al (1986) according to 
which the integrated density of states for the one-dimensional Anderson model with the 
Bernoulli distributed l q  potential has a singular continuous component. 

Energy 

Figure 1. The result of computer simulations of the ILAC in one dimension for the case of 
potential with a smooth distribution. Here H’(42) chosen to be 120 x 120 manices with 
3 = 1 and q(x )  are u n i f o d y  distributed over [-1.11 random variables. The dashed and solid 
lines represent the ILAC for U = 5 and v = 50, conespondingly. 
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Energy 

Figure 2. The result of computer simulations of the UAC in one dimension for Le case of 
potential with a smwth distribution. Here H*(42) are chosen to be 120 x 120 matrices with 
,7 = 1 and q ( x )  are Bernoulli random variables (Prob[q(x)  = 1) = Prob(q(r )  = -1) = 4). 
The dashed and~solid lines represent the UC for U = 5 and U = 50, correspondingly. 
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